## Liquid Pressure Sensor

Sensor for measuring the pressure of liquid in a pipe or vessel

## USE / PURPOSE

The sensors are commonly used to measure the pressure in the delivery pipeline or in a vessel. The pressure signal is used with a suitable LORENTZ pump controller to measure pressure and for pressure switching or constant presure applications. The liquid pressure sensor must be used with a compatible LORENTZ Controller (see requirements).

## FEATURES

- Gauge pressure sensor, pressure measurement relative to atmosphere
- For measuring pressure in a pipe or vessel
- Accurate, robust sensor
- For use with LORENTZ PumpScanner and pumpMANAGER


## REQUIREMENTS

- LORENTZ PS2 controller, LORENTZ PSk2 controller or PS Controller equipped with a licensed PS DataModule
- Care must be taken to position the sensor without turbulent water to ensure accurate measurement
- G1/4" or G1/2" female threaded filling / air vent hole is required to mount the sensor



## TECHNICAL DATA

- Sensor type: 2 wire gauge sensor
- Enclosure class: IP65
- Sensor housing : stainless steel
- Connects to LORENTZ PS DataModule
- $5 \mathrm{~m} / 10 \mathrm{~m}(16 \mathrm{ft} / 33 \mathrm{ft})$ cable length
- Overpressure: $1.5 x$ full scale
- Output signal : 4-20 mA
- Voltage : 11-28 VDC
- Application temp.: -30 to $80^{\circ} \mathrm{C}$ -22 to $176^{\circ} \mathrm{F}$
- Accuracy class : $0.5 \%$ full scale
- Thread type: G1/2" male (G1/4" with adapter)
- Meets the requirements for CS

ORDER INFORMATION

| Item \# | Product | Pressure range |
| :--- | :--- | :--- |
| $19-004450$ | Liquid Pressure Sensor, LPS-500 | $0-500 \mathrm{kPa}$ <br> 0 to $5 \mathrm{bar} / 0$ to 72.5 psi |
| $19-004460$ | Liquid Pressure Sensor, LPS-1000 | $0-1000 \mathrm{kPa}$ <br> 0 to $10 \mathrm{bar} / 0$ to 145 psi |
| $19-002760$ | Liquid Pressure Sensor, LPS-2000 | $0-2000 \mathrm{kPa}$ <br> 0 to $20 \mathrm{bar} / 0$ to 290 psi |

## DIMENSION/WEIGHT

- Packing dimensions: $190 \times 180 \times 80 \mathrm{~mm}$
$7.5 \times 7.1 \times 3.2$ in
- Weight:
$0.6 \mathrm{~kg} / 1.3 \mathrm{lbs}$

